Agenda – MTU Investor and Analyst Day 2015

<table>
<thead>
<tr>
<th>Time</th>
<th>Agenda</th>
<th>Speaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:00 – 11:10</td>
<td>Welcome</td>
<td>Michael Röger</td>
</tr>
<tr>
<td>11:10 – 11:20</td>
<td>Excellent Position in an Attractive Market</td>
<td>Reiner Winkler</td>
</tr>
<tr>
<td></td>
<td>Geared Turbofan: Flying and Producing Efficiently</td>
<td>Dr. Rainer Martens</td>
</tr>
<tr>
<td></td>
<td>Technology Roadmap: Key for Success</td>
<td></td>
</tr>
<tr>
<td>12:10 – 13:00</td>
<td>Geared up for Growth with a Broad Portfolio</td>
<td>Michael Schreyögg</td>
</tr>
<tr>
<td></td>
<td>Emerging Markets Slowdown: A severe Threat?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MRO business: Uniquely Positioned for Growth</td>
<td></td>
</tr>
</tbody>
</table>
Agenda – MTU Investor and Analyst Day 2015

<table>
<thead>
<tr>
<th>Time</th>
<th>Agenda</th>
<th>Speaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>13:00 – 14:00</td>
<td>Lunch Break</td>
<td></td>
</tr>
<tr>
<td>14:00 – 14:40</td>
<td>Flight hour Agreements: Beneficial for the Operator and MRO Provider</td>
<td>Reiner Winkler, Michael Schreyögg</td>
</tr>
<tr>
<td>14:40 – 15:20</td>
<td>Financials & Outlook</td>
<td>Reiner Winkler</td>
</tr>
<tr>
<td>15:20</td>
<td>End of Conference</td>
<td></td>
</tr>
</tbody>
</table>
Excellent Position in an Attractive Market

Reiner Winkler, Chief Executive Officer
Market Overview

<table>
<thead>
<tr>
<th>Status</th>
<th>Market Indicator</th>
<th>2014 A</th>
<th>2015 E</th>
<th>2016 E</th>
</tr>
</thead>
<tbody>
<tr>
<td>🎉</td>
<td>Passenger Traffic</td>
<td>+6.0%</td>
<td>+6.7%</td>
<td></td>
</tr>
<tr>
<td>🎉</td>
<td>Airline Profits</td>
<td>$16 bn</td>
<td>$29 bn</td>
<td></td>
</tr>
<tr>
<td>🎉</td>
<td>Crude Oil (Brent)</td>
<td>100 $</td>
<td>54 $</td>
<td></td>
</tr>
<tr>
<td>🎉</td>
<td>Airliner Deliveries</td>
<td>1,350</td>
<td>~ 1,390</td>
<td></td>
</tr>
<tr>
<td>🎉</td>
<td>Airliner Orderbook</td>
<td>11,520</td>
<td>11,710</td>
<td></td>
</tr>
<tr>
<td>🎉</td>
<td>Airliner Engine Fleet</td>
<td>41,410</td>
<td>43,350</td>
<td></td>
</tr>
</tbody>
</table>

Source: IATA, Ascend, EIA
Commercial OEM: Milestones Set for Future Growth

- Over 7,000 GTF engines on firm order or optioned
- PW1100G-JM (A320neo) received its FAA certification in Jan 2015
- GTF performance in flight test programs according to plan
- Ramp up of new engine programs successfully initiated
- Extension of MTU AE Polska in operation

- First development modules for GE9X in production
- First flight of Gulfstream G500 (PW814) in May 15 and MRJ (PW1200G) in Nov 15
Military Business: Stable Business with Strong Export Potential

- Kuwait signed a MoU for 28 Eurofighter Typhoon aircraft
- First flight of CH-53K powered by GE38 took place in October
- MTU received the EASA certification for maintaining TP400
- TP400 engine production fully ramped up
MRO: Workload Secured for Decades

- MTU signed MRO network agreement for the PW1100G-JM in Jun 2015
- Optimization of V2500 FhA agreements on track
- MTU Maintenance Hannover started maintenance work for airlines in Iran
- GEnx TCF MRO capability established
MTU’s Agenda for 2016

• Assembly line for the PW1100G-JM engine in operation
• GTF module production ramped up according to plan
• Position of MTU in the changing MRO market environment optimized
• Continuous improvement of Flight hour Agreement performance
• MRO readiness at MTU Maintenance Hannover for PW1100G-JM achieved
• Technology roadmap to sustain and improve market position pursued
• Implementation of the new IFRS rule 15 underway
Geared Turbofan: Flying and Producing Efficiently

Dr. Rainer Martens, Chief Operating Officer
The GTF Concept at a Glance: GTF versus Direct Drive Turbo Fan

- higher propulsive efficiency
- higher low spool component efficiency
- shorter, lighter

GTF offers a superior fuel burn consumption at lower maintenance cost

(Source: cfmaeroengines)

- 25% less stages
- 45% less airfoils
- lower cycle temperature

Fan drive gear
3 stg LPC
8 stg HPC

2 stg HPT
3 stg LPT

3 stg LPC
10 stg HPC

2 stg HPT
7 stg LPT

LPC = Low Pressure Compressor
HPC = High Pressure Compressor
LPT = Low Pressure Turbine
HPT = High Pressure Turbine
stg = Stages
The GTF Concept at a Glance: Enabling a Reduced Noise Footprint

Narrowbody aircraft leaving Munich airport

Year 2015
GTF powered A320 NEO
Noise footprint reduced by approx. 70%

GTF engines help protecting the environment

Noise Simulation: Pratt & Whitney SEL Contour Source: Wyle Laboratories
2015 Development Milestones GTF Engines, PW800, GE9X and GE38

<table>
<thead>
<tr>
<th></th>
<th>PW1500G / CSeries</th>
<th>PW1100G-JM / A320neo</th>
<th>PW1200G / MRJ</th>
<th>PW1400G / MS-21</th>
<th>PW1900G / PW1700G / E-Jet 2nd Gen.</th>
<th>PW800 / G500, G600</th>
<th>GE9X / B777X</th>
<th>GE38 / CH-53K</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First Engine to Test</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2015</td>
<td>2016</td>
<td></td>
<td>2015 Design Freeze</td>
</tr>
<tr>
<td>Tested in Flying Testbed</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>N/A</td>
<td>2015 2016</td>
<td>✓</td>
<td>2017 N/A</td>
</tr>
<tr>
<td>Engine Certification</td>
<td>✓</td>
<td>✓</td>
<td>2016</td>
<td>2015</td>
<td>2016</td>
<td>2017</td>
<td>2018</td>
<td>2018*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2016</td>
<td>2017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>First Flight</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>2016</td>
<td>2016 2017</td>
<td>2018</td>
<td>✓</td>
</tr>
</tbody>
</table>

GE38: Certification of whole aircraft system after flight testing is completed
Production Ramp Up

<table>
<thead>
<tr>
<th></th>
<th>2009</th>
<th>2015</th>
<th>2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbines</td>
<td>800</td>
<td>1150</td>
<td>1850</td>
</tr>
<tr>
<td>Compressors</td>
<td>200</td>
<td>320</td>
<td>1580</td>
</tr>
<tr>
<td>Turbine Center Frame</td>
<td>30</td>
<td>380</td>
<td>350</td>
</tr>
<tr>
<td>Engine Assembly</td>
<td>30</td>
<td>110</td>
<td>290</td>
</tr>
<tr>
<td>Total</td>
<td>1060</td>
<td>1960</td>
<td>4070</td>
</tr>
</tbody>
</table>

MTU faces a steep increase in commercial engine business.
Strategic Setup Production and Supply Chain

High Tech

MTU AE Munich
-Sophisticated parts and production processes
-Automation
-Development of new production technologies
-Know How to support all MTU sites and suppliers

Mid - Low Tech

MTU AE Polska
-Adopting established parts and production lines from Munich
-Improvement of ‘mid tech’ parts and production processes
-Module assembly improved with know how transferred from automotive industry

Raw Material, Mid-Low Tech

Supplier
-Raw parts
-Finished parts as second source
-‘Low tech’ parts from low cost countries

Risk Mitigation

- Keeping and improving MTU’s high tech knowledge in Munich
- MTU Polska as prime source for ‘mid tech’ parts – supplier as second source
- Dual Source
- Development of advanced manufacturing technology at MTU Munich

The Supply Chain is based on 2 MTU Manufacturing Sites and a Worldwide Network of Suppliers
Measures Ensuring MTU’s Ramp Up Capability

<table>
<thead>
<tr>
<th>Infrastructure</th>
<th>Prime Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Blisk-Building</td>
<td>• Blisk</td>
</tr>
<tr>
<td>• Logistic-Building</td>
<td>• Blades and Vanes LPT</td>
</tr>
<tr>
<td>• Extension MTU-Polska</td>
<td>• Vanes HPC</td>
</tr>
<tr>
<td>• NEO Assembly Building 076</td>
<td>• Rings</td>
</tr>
<tr>
<td>• MRO Readiness Hannover</td>
<td>• Supply-Chain Titan-Aluminid</td>
</tr>
</tbody>
</table>

⇒ Infrastructure is in place

⇒ Procurement Teams are operative

<table>
<thead>
<tr>
<th>New Production Concepts</th>
<th>Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Blisk-production</td>
<td>• Ramp Up Monitoring for</td>
</tr>
<tr>
<td>• Rotor-production</td>
<td>• Engineering & manufacturing processes</td>
</tr>
<tr>
<td>• Case-production</td>
<td>• Infrastructure & production concepts</td>
</tr>
<tr>
<td>• NEO engine assembly</td>
<td>• Suppliers</td>
</tr>
<tr>
<td>• Electrochemical milling (PECM) Nickel-Blisk</td>
<td>• Shop Floor Management</td>
</tr>
<tr>
<td>• Hub-Strut-Case production GE9X MTU AE Polska</td>
<td>• Office Management</td>
</tr>
<tr>
<td>• Innovative blade-production MTU AE Polska</td>
<td>⇒ New approaches improve speed, quality and risk mitigation</td>
</tr>
<tr>
<td>• Additive manufacturing</td>
<td>Operational excellence</td>
</tr>
</tbody>
</table>

⇒ High Tech remains our differentiator

Topics are addressed and well under way to support production ramp up
Blisk Manufacturing

Production System Building 077

- Changes, Improvements
 - Increase of machine hours per year from 3,500 to 6,000
 - Increase of Blisk output per year from 500 to 3,600
 - 50% reduction of indirect costs
 - More efficient use of area
 - Increase of shifts from 15 to 18
 - Introduction of full automation with option of man free production
New Logistics Building

<table>
<thead>
<tr>
<th>Changes, Improvements</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Increase of goods received per year from 80,000 to 115,000 within 5 years</td>
</tr>
<tr>
<td>• Improved efficiency leads to a 14% reduction of process time</td>
</tr>
<tr>
<td>• Efficient flow oriented processes</td>
</tr>
<tr>
<td>• 30% reduction in lead time</td>
</tr>
<tr>
<td>• Weather protected storage of goods</td>
</tr>
</tbody>
</table>
Rotor, Stator Production

Production System Rotor

Changes, Improvements

- Reduction of small quantity part numbers by 70%
- 12% reduction in hourly rate
- 30% reduction in labor time for turning operations
- Increase of disc quantity per year from 2,300 to 3,000
- Decommissioning of 14 machines clears 700 sqm production area
Extension Polska

Production MTU AE Polska

- 20,000 sqm shop floor
- 180k hours engineering capacity
- Low labour rates
- Execution of V2500 Upshare
- ‘Mid Tech’ competencies are kept within MTU putting suppliers under pressure
- GE9X Hub Strut Case production at lowest costs
- Flow oriented assembly lines

Changes, Improvements
NEO Engine Assembly

<table>
<thead>
<tr>
<th>Production System NEO Engine Assembly</th>
<th>Changes, Improvements</th>
</tr>
</thead>
</table>
| ![Image of NEO Engine Assembly](image1.jpg) | - New civil engine assembly line with 220 engines per year
- Logistic system is based on pull/just-in-sequence principle
- Flow oriented assembly line
- High tech transportation and assembly system
- IT-Supported work flows |
Summary GTF

• The GTF is a new revolutionary design with unmatched performance

• The market success of this very efficient and successful product requires MTU’s supply chain to come to a new level of quantity and quality

• Successful production ramp up in the past and already implemented activities put MTU’s supply chain in an excellent position to execute the future ramp up efficiently
Technology Roadmap: Key for Success

Dr. Rainer Martens, Chief Operating Officer
Market Demands - Requirements for Future Engines

- Next generation commercial & military engines
- Performance improvement programs (PIP)
- Environmental regulations
- Flight hour Agreements

- Reduction of emissions and noise
- Aggressive production cost targets
- Maintenance cost reduction measures
- Engineering disciplines & manufacturing at excellence
MTU’s Technology Roadmap – Meeting the Requirements

Product
- Integrated Compression System
 - Improve efficiency, weight, design and pressure ratios
- Optimal High Speed LPT & TCF
 - Improve efficiency, weight design, temperature and erosion/corrosion capability

Enabler
- High Temp. Light Weight LPT Materials
 - Higher cycle parameters, reduce weight, enabling new designs and their producability
- Additive Manufacturing
 - Expand portfolio of parts and change of design philosophy
- Virtual Design & Production
 - Improve production processes with an analytical simulation of all relevant parameters
Execution of MTU’s Technology Roadmap – Technology Network

DLR Köln:
- Computational Fluid Dynamics
- Compressor Testing
- Ceramic Matrix Composites

RWTH & FhG Aachen:
- Compressor Aerodynamic
- Manufacturing Technologies

University Hannover:
- Airfoil Dynamics
- MRO

TU München:
- Component Design

University Stuttgart:
- Turbines
- Turbine Test Facility

BW University Neubiberg:
- More Electric Engine
Next Generation GTF - Characteristics

Ultra high BPR 14 - 20 with lowest fan pressure ratio

OPR 60+ integrated compression system

Newest light weight and heat resistant materials

Ultra efficient high speed expansion system

MTU’s Technology Roadmap will lead to the next generation GTF – applicable for all thrust ranges
The geared jet engine concept offers a substantial improvement potential.
A few Words about Electric Flight: Basic Concepts

Electric

- Thrust generated with fans driven by electric motors. No gas turbines on board.
- Energy required for the electric motors is provided by batteries or fuel cells

Hybrid – electric

- Combined system consisting of gas turbine and fans driven by electric motors
- Gas turbine used to generate either electric power or thrust
- Batteries required

Weight is driving the use of electric components
A few Words about Electric Flight: Technical Challenges

Battery Technology:
- For an application in short range regional jets todays batteries require a tenfold improvement in energy density as well as in power density – both requirements are contradictory.
- Extrapolating todays improvement in Battery Technology it will take more than 30 years to achieve the required improvements.

Power Distribution and Conversion:
- Using today’s conventional electrical power distribution and power conversion (electric – thrust) technologies would lead to high weight not suitable in commercial aircraft.
- Use of high temperature superconductivity will be required. Cooling down to a temperature of ~45°K (-230°C) is necessary. A blackout of cooling will result in loss of thrust.

Flight safety and Certification:
- All these new technologies have to prove reliability and have to be certified.

Today Electric Flight can only be realized for small short-range (2-4 seats) aircraft. For small regional jets electric flight might be imaginable in 30+ years.
Summary Technology

• MTU's Technology Roadmap will lead to a next generation GTF – incorporating a wide range of new technologies

• With the next generation GTF MTU is well positioned to cover the full range of thrust for future aircraft and applications

• Turbo Engines will power aircrafts for a long time – the challenges for incorporating electric flight are very high
Thank you for your attention!

Questions & Answers
Geared up for Growth with a Broad Portfolio

Michael Schreyögg, Chief Program Officer
Business Jet & Regional Jet Market

PW300/PW500/PW800
- Installed base of more than 7,000 engines
- 10 business jet applications in operation
- Dassault Falcon 8X in development
- PW800 exclusive engine for future Gulfstream large business jets

PW1200/PW1500 PW1700/PW1900
- 3,400 orders and options
- GTF family exclusively powers future Regional Jets from Embraer, Mitsubishi and Bombardier
- New market for MTU OEM with a future market share of 90% expected

CF34
- ~6,600 engines flying
- Exclusive powerplant for current regional jets
- Fast MRO growth with over 800 off-wing shop visits
- 12% market share

Expected average annual growth rate of mid teens until 2025
Narrowbody Market

<table>
<thead>
<tr>
<th>PW1100G-JM</th>
<th>V2500</th>
<th>CFM56</th>
</tr>
</thead>
</table>
| • Strong order book
• ~50% market share on A320neo family in total; higher market share of ~70% on A321neo
• 15% improved fuel efficiency, additional 2% by 2019
• Designed for lower maintenance cost | • ~ 5,600 engines flying
• Strong growth of spare parts sales until mid of next decade
• #1 MRO provider - capability in 2 locations | • Largest installed fleet
• Strong MRO growth
• #1 independent provider: over 10% market share
• ~ 900m$ new contract wins in 2015
• 3 MTU MRO locations with CFM56 capability |

Excellent narrowbody market position leads to continuous OEM & MRO growth
Widebody Market

<table>
<thead>
<tr>
<th>GE9X</th>
<th>GEnX</th>
<th>GE90-110/-115B</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Revenue potential 4 bn€</td>
<td>- Market share of 60% on 787, exclusive on 747-8</td>
<td>- ~ 1,500 engines flying; strong MRO growth</td>
</tr>
<tr>
<td>- 950 orders and options</td>
<td>- In production since 2011</td>
<td>- Independent MRO offer with growing market share</td>
</tr>
<tr>
<td>- Entry into service expected in 2020</td>
<td>- ~770 engines in service</td>
<td>- 5 exclusive customers with contract volume of ~1 bn$</td>
</tr>
<tr>
<td>- Exclusive engine for Boeing 777X</td>
<td>- Market expectation of 4,400 engines</td>
<td></td>
</tr>
<tr>
<td>- MTU will be partner of GE-MRO network</td>
<td>- MTU is partner of the GE-MRO network</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Exp. MRO revenue 3 bn€</td>
<td></td>
</tr>
</tbody>
</table>

Strong partnership with GE Aviation in the widebody market
Military Business

<table>
<thead>
<tr>
<th>GE38</th>
<th>TP400-D6</th>
<th>EJ200</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Power for CH-53K for US marine corps</td>
<td>• Ramp up successfully achieved</td>
<td>• Strong revenue contribution, both OEM&MRO</td>
</tr>
<tr>
<td>• Latest Technology Turboshaft engine</td>
<td>• More than 100 engines produced</td>
<td>• 450 Eurofighter in service</td>
</tr>
<tr>
<td>• First flight October 2015</td>
<td>• 16 aircraft are operated by 5 nations</td>
<td>• 1,180 engines delivered</td>
</tr>
<tr>
<td>• Engine could be used for additional applications</td>
<td>• Aircraft well positioned for export</td>
<td>• Production of until 2021</td>
</tr>
<tr>
<td>• Strong transatlantic partnership</td>
<td></td>
<td>• Strong export potential</td>
</tr>
</tbody>
</table>

Successful new product introduction for the international military market
Emerging Markets Slowdown: A Severe Threat?

Michael Schreyögg, Chief Program Officer
Emerging Market Slowdown Represents a Risk for OE and Aftermarket

- Emerging markets (EM) currently experience slower or negative GDP growth and large currency depreciations against the US$.

 This is caused by the slowdown in China, sliding commodity prices and the looming prospect of rising US interest rates

- Passenger traffic growth in EM has remained robust in September.

 IATA Sep: Lat. Am. +7.9%, Asia +6.8%, China +12.5%, India +13.2%, Russia +12.1%

- EM represent 32% of the commercial jet engine fleet and 36% of firm orders to be delivered in the next 3 years.

How much of MTU’s fleet and orders is exposed to a potential slowdown of EM?
Method to Assess MTU’s Exposure

- Top-down assessment
- 11 high risk EM countries identified
 - GDP growth forecast downgrade for 2016
 - Currency devaluation vs. US$ in last 12m (rising US$ costs for aircraft, fuel, etc.)
- Focus on non-flag carriers in high risk EM (flag carriers with a lower risk)
- Exposure of MTU’s OEM portfolio via:
 - share of in-service fleet (spare parts)
 - share of orders of next 3 years (OE)

Source: MTU, IMF, Bloomberg
Exposure of MTU Deliveries is Limited and Below Industry Average

Source: Ascend, MTU
Exposure of MTU Fleet is also Limited and Below Industry Average

Source: Ascend, MTU
MTU’s Exposure to Emerging Markets: Limited and Manageable

- 11 emerging countries have been identified as high risk (Brazil, Russia, Mexico, Indonesia, Turkey, Poland, Colombia, South Africa, Malaysia, Chile, Peru)

- High risk EM have ordered 13% of MTU’s engines to be delivered in the next 3 years and operate 9% of MTU’s fleet

- This reduces to 7% and 4% respectively when only secondary carriers in high risk EM are considered

- Such shares are below industry average

- Should it occur, this risk is limited and manageable for MTU
MRO Business: Uniquely Positioned for Growth

Michael Schreyögg, Chief Programm Officer
MTU’s Diversified Approach Ensures a Broad Market Coverage

1. Independent
 - Over 700 customers (airlines, MROs, lessors…)
 - #1 independent for engine MRO
 - Integrated solutions
 - 120 IGT/Marine customers

2. OEM cooperation
 - MTU is OEM network partner
 - MRO share is secured at program entry for entire life

3. Airline cooperation
 - JV with China Southern
 - JV with Lufthansa Technik (ASSB)

CF34, CF6, CFM56, GE90G, PW2000, V2500
LM IGTs, Vericor

GEnx, GP7000, PWC, V2500, PW1000G, GE9X

V2500, CFM56
Parts repair
MTU’s MRO Portfolio is the Basis for Future Growth

MTU has the **largest engine MRO portfolio** of all providers: The market MTU serves **will grow over-proportionally at 10% p.a.**

MTU’s MRO Portfolio

- **CAGR 2015-25**
 - Total Market: ~8%
 - MTU-served: ~10%

Market Approach

- Independent or Airline Cooperation
 - CF34, CFM56, CF6, GE90G, PW2000, V2500...
- OEM Cooperation
 - PW1000G, GEnx, GP7000, V2500...

Source: MTU, escalated
MARKET TRENDS
- Market CAGR ~8% over next 10 years
- Increasing demand for integrated solutions
- Consolidation of pure independents expected

CHARACTERISTICS
- Direct customer contact
- Highly competitive market with strong price and performance focus
- Customized services

MTU POSITIONING
- Largest MRO portfolio, #1 independent
- Tailored/ integrated solutions over entire engine life
- Alternative material solutions
- High MTU internal synergies
Independent: Evolution of MTU’s Business Model
From an engine MRO to a provider of service solutions

Vertical integration

Long-term leasing/financing

Engine MRO
related services

End-of-life solutions for operators and asset owners

beyond MRO

• Classic engine MRO
 • Parts repair

• LRU management
 • Spare engine support
 • Trend monitoring
 • On-site services

• Leasing
 • Alternatives to MRO
 • Engine life extension and exit strategies

Additional services up to Total Engine Care (TEC®)

Thrust solutions and asset management

1980s 1990s 2000s 2010s 2020s
OEM Cooperation

MARKET TRENDS
- Increasing OEM market coverage
- OEM-FHA share has grown up to 40%
- Majority of new engines are sold with OEM-FHA
- Airline concentration on core business

CHARACTERISTICS
- OEM is contract holder
- Long term deals with focus on reducing life-cycle cost
- Competition within OEM network

MTU POSITIONING
- OEM program share secures MRO workload for decades
- Standardization of workscopes leads to economies of scale
- Use of MTU's expertise to best manage fleets of OEMs
- Future capacity additions in low cost environment
Airline Cooperation

MARKET TRENDS
- 60% of global order books come from emerging markets
- Strong growth young airlines with large future fleets
- Interest to build up MRO expertise

CHARACTERISTICS
- Partners provide baseload volume and access to licences
- Presence in growing markets helps 3rd party business
- Highly competitive shops due to low labor cost environment

MTU POSITIONING
- Local presence with high MTU quality standards
- Activities in low-cost labor countries
- Access to fast growing Chinese/Asian market via JV
- MTU network benefits from more repair volume and offload
MTU Maintenance Zhuhai – A Success Story
Joint Venture with China Southern Air Holding

Company Key Facts

- 50:50 joint venture since 2001
- Portfolio: V2500-A5, CFM56-3/5B/7
- Future potential: PW1100G, LEAP
- Capacity: 300 shop visits after extension 2012 (+50%)
- Employees: >700

Partner China Southern

- 3rd largest airline worldwide
- 100 million passengers in 2014
- Over 600 aircraft in operations with ~1,000 engines in JV portfolio
- 24 A320neo orders with PW1100G

Fast Growing Chinese Market

Revenues (bn. $)

- 2015: 2.1
- 2025: 7.6
- CAGR: 13.7%

Shop visits

- 2015: 546
- 2025: 1,254
- CAGR: 8.7%

Competitiveness

- #1 provider in China
- Close to 1,800 shop visits
- US$ revenues doubled within 5 years (2010-15)
- Over 800 m$ contract wins in 2015

Shop visits (2014)

- China: 44%
- Asia: 15%
- Others: 28%
- CSA: 13%
MTU’s Diversified Approach Ensures a Broad Market Coverage

1. Independent
 - Remain #1 provider with customer focus
 - Provide integrated lifecycle services

2. OEM cooperation
 - Provide cost efficient industrialized MRO
 - Leverage OEM network

3. Airline cooperation
 - Develop current cooperation
 - Investigate future cooperation potential
Outlook

2015

- All market channels contribute to strong MRO revenue increase – with OEM cooperation growing fastest
- Independent segment remains the biggest contributor in 10 years time

2025

- CAGR ~ 10%
- w/o MTU Zhuhai high single digit

% of USD revenue volume incl. MTU Zhuhai 100%, Airline Coop. only CSA; 3rd party customers MTU Zhuhai included in independent
Thank you for your attention!

Questions & Answers
Flight hour Agreements – Beneficial for the Operator and MRO Provider

Reiner Winkler, Chief Executive Officer
Michael Schreyögg, Chief Program Officer
Evolution of Engine Maintenance Contract Options

- **Traditional**
 - Time & Material (T&M)

- **Fixed Rate**
 - Fixed price/Not to exceed

- **Integrated Solutions**
 - Flight hour Agreements (FhA)
The traditional T&M model shows a correlation of Sales and Cash flow
FhAs lead to an improved Cash Flow profile, P&L recognition remains unchanged
Flight Hour Agreement - Contract Approach Differences

<table>
<thead>
<tr>
<th>Fixed rate</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>per flight-h / cycle</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pay as you go (PAYG)</th>
<th>Pay at Shop Visit (PASV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed rate per h paid regularly when engine is operated</td>
<td>Fixed rate per h paid at time of MRO event</td>
</tr>
</tbody>
</table>

- **Smoothed cash flow**
- **Cash flow tied to overhaul Cycle**
Flight Hour Agreements – Benefits

Operator

- MRO cost predictability and transparency
- Predictable cash-flow
- Risk transfer to MRO provider
- Additional services and insurance options

MRO provider

- Exclusive shop visit volume
- Predictable and steady cash-flow and workload
- Possibility to include service packages (e.g. unscheduled event coverage, lease engines, training…)
- Simple invoicing
- More flexible inventory management

Advantages can only be generated with a long term agreement, optimizing the whole fleet instead of single events
What Can be Done in Order to Improve FhA Performance?

Increase on-wing time

- On-wing support
- Engine trend monitoring
- Coatings
- Select standard
- Removal strategy
- Modifications

Reduce Shop Visit costs

- Workscoping
- Material management
- Repair development
- Coatings
Improving FhA Performance – On-Wing Support

Example 1: Accessory Gear Box (AGB) oil leakage

- AGB oil leakage detected
- AGB removed on-site
- AGB repaired and installed again
- Aircraft back in operation after one weekend
- Shop visit avoided

Example 2: Low Pressure Turbine (LPT) swap

- Fully equipped mobile container to perform LPT module swaps on-site
- LPT module changed
- Shop visit avoided
Improving FhA Performance – Engine Trend Monitoring

Example 1: High Pressure Turbine (HPT) stage 2 blade crack

- HPT Boroscope inspection (BSI) stage 1&2
- BSI findings: 1 blade cracked
- Engine removed
- Secondary damage avoided

Example 2: Broken Bolt

- Variable Stator Vane Bolt broken
- Engine inspected
- On-site bolt replacement
- Shop visit avoided
Improving FhA Performance – Erosion Coating (ERCoatnt)

Profile nearly unchanged

uncoated

uncoated

uncoated

Profile with material loss and sharpened trailing edge
Summary

- Demand for Flight hour Agreements is increasing
- FhAs do not lead to a change in the revenue profile but to a change in the cash flow profile
- The airlines as well as the OEMs benefit from FhAs
- The MRO service cost are improved by an increase in reliability and by lower cost per shop visit
Typical Financial Profile of a 10 Years FhA Contract

<table>
<thead>
<tr>
<th>Year</th>
<th>FHA Cash In (cum.)</th>
<th>FHA Cost (cum.)</th>
<th>FHA Revenue (cum.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Year 2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Year 3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Year 4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Year 5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Year 6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Year 7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Year 8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Year 9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Year 10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

$ Accumulated $ Cost per Shopvisit

Increase OWT

Reduce SV Cost

TOTAL Sales

TOTAL Costs
Typical Financial Profile of a 10 Years FhA Contract
Cash Flow Streams of V2500 IAE FhA Agreements

Roughly 60% of the V2500 fleet is under FhA contract with IAE
Summary

• IAE currently works together with airline customers on several cost reduction initiatives for FhA agreements

• Impacting MTU’s financials via
 • Less shop visits from IAE and therefore less sales for MRO division short term
 • Lower spare parts sales short term, but…
 • Higher EBIT margin on spare parts short term with a higher total EBIT over life of each contract
 • Improvement of Free Cash Flow already short term, as IAE has to pay less for FhA shop visits
Thank you for your attention!

Questions & Answers
Financials & Outlook

Reiner Winkler, Chief Executive Officer
Financial Highlights 9M 2015

Revenues (m€)

- 9M 2014: 2,812
- 9M 2015: 3,257

EBIT adj. / EBIT adj. Margin (m€ / %)

- 9M 2014: 271, 9.6%
- 9M 2015: 333, 10.2%

Net Income adj. / EPS adj. (m€ / €)

- 9M 2014: 3,50, +30%
- 9M 2015: 4,53

Free Cash Flow (m€)

- 9M 2014: 84
- 9M 2015: 119

* w/o market-to-market valuations of US$, options and others
Guidance 2015

<table>
<thead>
<tr>
<th></th>
<th>FY 2014</th>
<th>Guidance 2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revenues</td>
<td>3,914</td>
<td>~ 4,600</td>
</tr>
<tr>
<td>EBIT adj.</td>
<td>383</td>
<td>~ 430</td>
</tr>
<tr>
<td></td>
<td>9.8%</td>
<td></td>
</tr>
<tr>
<td>Net income adj.</td>
<td>253</td>
<td>~ 295</td>
</tr>
</tbody>
</table>

- Guidance 2015 based on 1,10 US$/€
- Commercial US$ OE sales up high single digit
- Commercial US$ spare parts sales up low to mid single digit
- Military revenues down 10%
- Commercial MRO US$ sales up low to mid single digit
- R&D (P&L) down by 10 m€
- Tax rate in 2015: 30%
- FCF at high double digit million number
New IFRS 15: Revenues from Contracts with Customers

Background IFRS 15

- IASB and FASB intend to harmonize IFRS and US-GAAP regulation on revenue recognition
- IFRS 15 was issued in May 2014 and will replace previous standards
- IFRS 15 regulates revenue recognition in more detail, by providing a 5-step-model and respective application guidance:
 1. Identify the contract
 2. Identify performance obligations
 3. Determine the transaction price
 4. Allocate transaction price to performance obligations
 5. Recognize revenue when performance obligation is satisfied
New IFRS 15: Revenues from Contracts with Customers

Update November 2015

• IASB rules mandatory application of IFRS 15 from 2018 onwards; postponed by 1 year
• In Europe application of IFRS 15 requires EU endorsement which is now expected for Q1/2016
• MTU has launched an internal project in 2015 with the support of auditor firms to assess implication from IFRS 15
• All active customer contracts are examined w.r.t
 • Classification of performance obligations (i.e. FHA contract related services)
 • Classification/Presentation of sales and cost of sales elements (i.e. concessions)
Head- and Tailwinds 2016

Revenue Growth

<table>
<thead>
<tr>
<th>Category</th>
<th>Growth Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Military</td>
<td>Stable</td>
</tr>
<tr>
<td>New engine Sales (Com. OE)</td>
<td>Stable</td>
</tr>
<tr>
<td>Spare parts Sales (Com. Spares)</td>
<td>Low to mid single digit</td>
</tr>
<tr>
<td>Commercial MRO</td>
<td>High single digit</td>
</tr>
</tbody>
</table>

- **Tailwind from US$ fx-rate due to improved Hedge book**
- **Slight headwind from Com. OE mix and R&D (P&L)**
US$ Exchange Rate / Hedge Portfolio

Hedge Book as of November 25, 2015 (% of net exposure)

(mUS$)

<table>
<thead>
<tr>
<th>Year</th>
<th>Hedge Book as of November 25, 2015 (%) of net exposure</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>984 (=93%)</td>
</tr>
<tr>
<td>2016</td>
<td>749 (=68%)</td>
</tr>
<tr>
<td>2017</td>
<td>500 (=40%)</td>
</tr>
<tr>
<td>2018</td>
<td>130 (=10%)</td>
</tr>
</tbody>
</table>

Average hedge rate (US$/€): 1.25 1.25 1.22 1.15
Long Term Outlook 2014 – 2025 - Update

<table>
<thead>
<tr>
<th></th>
<th>Investment Phase 2014-2017</th>
<th>Consolidation Phase 2018-2025</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revenues</td>
<td>Military:</td>
<td>Military:</td>
</tr>
<tr>
<td></td>
<td>Com. OE: ↑</td>
<td>Com. OE: ↑</td>
</tr>
<tr>
<td></td>
<td>Com. Spares: ↑</td>
<td>Com. Spares: ↑</td>
</tr>
<tr>
<td></td>
<td>Com. MRO: ↑↑</td>
<td>Com. MRO: ↑↑</td>
</tr>
<tr>
<td>EBIT adjusted</td>
<td>Growth in line with revenues</td>
<td>Growth stronger than revenues</td>
</tr>
<tr>
<td>Net Income adj.</td>
<td>Growth stronger than EBIT adj.</td>
<td>Growth in line with EBIT adj.</td>
</tr>
<tr>
<td>*CCR</td>
<td>Low double digit %</td>
<td>High double digit %</td>
</tr>
</tbody>
</table>

Updated:
- Less Volume GP7000 OE 2016ff FX tailwind
- Higher growth rate PW1100G-JM (Airbus production rate increase)
Key Takeaways

- MTU well prepared with its technology roadmap for future engine projects
- Production and supply chain strategy for the ramp up is implemented
- MTU benefits from its broad product portfolio in all business segments
- Risk of slowdown in emerging markets is manageable
- Diversified MRO market access options and product portfolio ensures future growth
- FhAs lead to a win-win situation for both airlines and MRO providers
- Measurements to improve FhA performance are in place
- Internal project launched for the IFRS 15 implementation
- For 2016 MTU is committed to another year with earnings growth
Thank you for your attention!

Questions & Answers
Cautionary Note Regarding Forward-Looking Statements

Certain of the statements contained herein may be statements of future expectations and other forward-looking statements that are based on management’s current views and assumptions and involve known and unknown risks and uncertainties that could cause actual results, performance or events to differ materially from those expressed or implied in such statements. In addition to statements that are forward-looking by reason of context, the words “may,” “will,” “should,” “expect,” “plan,” “intend,” “anticipate,” “forecast,” “believe,” “estimate,” “predict,” “potential,” or “continue” and similar expressions identify forward-looking statements.

Actual results, performance or events may differ materially from those in such statements due to, without limitation, (i) competition from other companies in MTU’s industry and MTU’s ability to retain or increase its market share, (ii) MTU's reliance on certain customers for its sales, (iii) risks related to MTU’s participation in consortia and risk and revenue sharing agreements for new aero engine programs, (iv) the impact of non-compete provisions included in certain of MTU's contracts, (v) the impact of a decline in German or other European defense budgets or changes in funding priorities for military aircraft, (vi) risks associated with government funding, (vii) the impact of significant disruptions in MTU’s supply from key vendors, (viii) the continued success of MTU’s research and development initiatives, (ix) currency exchange rate fluctuations, (x) changes in tax legislation, (xi) the impact of any product liability claims, (xii) MTU’s ability to comply with regulations affecting its business and its ability to respond to changes in the regulatory environment, (xiii) the cyclicality of the airline industry and the current financial difficulties of commercial airlines, (xiv) our substantial leverage and (xv) general local and global economic conditions. Many of these factors may be more likely to occur, or more pronounced, as a result of terrorist activities and their consequences.

The company assumes no obligation to update any forward-looking statement.

Any securities referred to herein have not been and will not be registered under the U.S. Securities Act of 1933, as amended (the “Securities Act”), and may not be offered or sold without registration thereunder or pursuant to an available exemption therefrom. Any public offering of securities of MTU Aero Engines to be made in the United States would have to be made by means of a prospectus that would be obtainable from MTU Aero Engines and would contain detailed information about the issuer of the securities and its management, as well as financial statements.

Neither this document nor the information contained herein constitutes an offer to sell or the solicitation of an offer to buy any securities.

These materials do not constitute an offer of securities for sale in the United States; the securities may not be offered or sold in the United States absent registration or an exemption from registration.

No money, securities or other consideration is being solicited, and, if sent in response to the information contained herein, will not be accepted.